Is my teaching innovative ... or just a good craftmanship?

Ewa B. Weinmüller

Institute for Analysis and Scientific Computing
Vienna University of Technology, Austria

DIAM, Gdańsk, 24th of June 2024

Charles Church and TU Wien

Content

Tell me, and I'll forget it.
Show me, and l'll remember.
Let me do it, and l'll keep it.
Konfuzius

Content

- University teaching: a challenge!

University teacher / student - a changing relationship: - Lecture/Tutorial: Linear Algebra f. TPH Tutorial: Computernumerics f. TPH

Content

- University teaching: a challenge!
- University teacher / student - a changing relationship:
- Lecture/Tutorial: Linear Algebra f. TPH
- Tutorial: Computernumerics f. TPH

Content

- University teaching: a challenge!
- University teacher / student - a changing relationship:
- Lecture/Tutorial: Linear Algebra f. TPH
- Tutorial: Computernumerics f. TPH
- Summary

General framework

School/University: What is different?

Fundamental assumption:

General framework

School/University: What is different?

- Fundamental assumption:

Voluntary participation and interest in the subject.
Teaching is not the only task of the university teachers.

General framework

School/University: What is different?

- Fundamental assumption:

Voluntary participation and interest in the subject.

- Teaching is not the only task of the university teachers.

Consequences for the students:

General framework

School/University: What is different?

- Fundamental assumption:

Voluntary participation and interest in the subject.

- Teaching is not the only task of the university teachers.
- Large number of students in the class.

Consequences for the students:

General framework

School/University: What is different?

- Fundamental assumption:

Voluntary participation and interest in the subject.

- Teaching is not the only task of the university teachers.
- Large number of students in the class.

Consequences for the students:

- Freedom, not known in the school.

Great independence required (information)

General framework

School/University: What is different?

- Fundamental assumption:

Voluntary participation and interest in the subject.

- Teaching is not the only task of the university teachers.
- Large number of students in the class.

Consequences for the students:

- Freedom, not known in the school.

Great independence required (information).

General framework

School/University: What is different?

- Fundamental assumption:

Voluntary participation and interest in the subject.

- Teaching is not the only task of the university teachers.
- Large number of students in the class.

Consequences for the students:

- Freedom, not known in the school.
- Great independence required (information).

General framework

School/University: What is different?

- Fundamental assumption:

Voluntary participation and interest in the subject.

- Teaching is not the only task of the university teachers.
- Large number of students in the class.

Consequences for the students:

- Freedom, not known in the school.
- Great independence required (information).
- Communication is more difficult, psychological barrier.

Teaching: A challenge!

Consequences for the university teachers:

Teaching: A challenge!

Consequences for the university teachers:
Is teaching important to me?
Do I have enough time?

Convey the feeling that students are important to you.

Teaching: A challenge!

Consequences for the university teachers:
Is teaching important to me?
Do I have enough time?

- Arouse interest and enthusiasm. Motivation.

Convey the feeling that students are important to you.

Facilitate understanding: apply the theory, use the tools that reinforce the insights, visualize wherever possible.

Teaching: A challenge!

Consequences for the university teachers:

> Is teaching important to me?
> Do I have enough time?

- Arouse interest and enthusiasm. Motivation.
- Convey the feeling that students are important to you.

Facilitate understanding: apply the theory, use the tools that
reinforce the insights, visualize wherever possible.
Enable the smooth running of the course. Provide complete information in time.

Teaching: A challenge!

Consequences for the university teachers:

> Is teaching important to me?
> Do I have enough time?

- Arouse interest and enthusiasm. Motivation.
- Convey the feeling that students are important to you.
- Facilitate understanding: apply the theory, use the tools that reinforce the insights, visualize wherever possible.

Enable the smooth running of the course. Provide complete information in time.

Facilitate communication.

Teaching: A challenge!

Consequences for the university teachers:

> Is teaching important to me?
> Do I have enough time?

- Arouse interest and enthusiasm. Motivation.
- Convey the feeling that students are important to you.
- Facilitate understanding: apply the theory, use the tools that reinforce the insights, visualize wherever possible.
- Enable the smooth running of the course. Provide complete information in time.

Facilitate communication.

Teaching: A challenge!

Consequences for the university teachers:

> Is teaching important to me?
> Do I have enough time?

- Arouse interest and enthusiasm. Motivation.
- Convey the feeling that students are important to you.
- Facilitate understanding: apply the theory, use the tools that reinforce the insights, visualize wherever possible.
- Enable the smooth running of the course. Provide complete information in time.
- Facilitate communication.

Lecture/Tutorial: Linear Algebra f. TPH
'Matrix' is all you need!

Lecture/Tutorial: Linear Algebra f. TPH (2)

Introductory mathematical course in the curriculum for TPH, 1. term, for approx. 300 persons.

Topics: Basic concepts (vector spaces, linear independence, basis, dimension), linear systems of equations (matrix as linear operator acting between vector spaces), Euclidean spaces, eigenvalue problems, ordinary differential equations.

Lecture/Tutorial: Linear Algebra f. TPH (2)

Linear Algebra f. TPH

- Introductory mathematical course in the curriculum for TPH, 1. term, for approx. 300 persons.

Topics: Basic concepts (vector spaces, linear independence, basis, dimension), linear systems of equations (matrix as linear operator acting between vector spaces), Euclidean spaces, eigenvalue problems, ordinary differential equations.

Lecture/Tutorial: Linear Algebra f. TPH (2)

Linear Algebra f. TPH

- Introductory mathematical course in the curriculum for TPH, 1. term, for approx. 300 persons.
- Topics: Basic concepts (vector spaces, linear independence, basis, dimension), linear systems of equations (matrix as linear operator acting between vector spaces), Euclidean spaces, eigenvalue problems, ordinary differential equations.

Length: 2 hours per week.

Large lecture hall, touchscreen laptop, projecting the printed lecture
notes and a document with notes written during the lecture (unloaded)

Lecture/Tutorial: Linear Algebra f. TPH (2)

Linear Algebra f. TPH

- Introductory mathematical course in the curriculum for TPH, 1. term, for approx. 300 persons.
- Topics: Basic concepts (vector spaces, linear independence, basis, dimension), linear systems of equations (matrix as linear operator acting between vector spaces), Euclidean spaces, eigenvalue problems, ordinary differential equations.
- Length: 2 hours per week.

Large lecture hall, touchscreen laptop, projecting the printed lecture notes and a document with notes written during the lecture (unloaded)

Lecture/Tutorial: Linear Algebra f. TPH (2)

Linear Algebra f. TPH

- Introductory mathematical course in the curriculum for TPH, 1. term, for approx. 300 persons.
- Topics: Basic concepts (vector spaces, linear independence, basis, dimension), linear systems of equations (matrix as linear operator acting between vector spaces), Euclidean spaces, eigenvalue problems, ordinary differential equations.
- Length: 2 hours per week.
- Large lecture hall, touchscreen laptop, projecting the printed lecture notes and a document with notes written during the lecture (uploaded).

Lecture/Tutorial: Linear Algebra f. TPH (2)

Linear Algebra f. TPH

- Introductory mathematical course in the curriculum for TPH, 1. term, for approx. 300 persons.
- Topics: Basic concepts (vector spaces, linear independence, basis, dimension), linear systems of equations (matrix as linear operator acting between vector spaces), Euclidean spaces, eigenvalue problems, ordinary differential equations.
- Length: 2 hours per week.
- Large lecture hall, touchscreen laptop, projecting the printed lecture notes and a document with notes written during the lecture (uploaded).
- Written open book exam at the end of the term.

Before we start...

Information:
TISS information system:

TUWEL administration system:

Before we start...

Information:

- TISS information system:
https://tiss.tuwien.ac.at
TUWEL administration system:

Vorbesprechung=Introduction: All relevant information in the first

Before we start...

Information:

- TISS information system:
https://tiss.tuwien.ac.at
- TUWEL administration system:
https://tuwel.tuwien.ac.at
Vorbesprechung=Introduction: All relevant information in the first

Before we start...

Information:

- TISS information system:
https://tiss.tuwien.ac.at
- TUWEL administration system:
https://tuwel.tuwien.ac.at
- Vorbesprechung=Introduction: All relevant information in the first hour.

Introduction

Introduction

Introduction

Introduction

There is no science that has not developed from the knowledge of phenomena, but in order to benefit from this knowledge, one has to be a mathematician.

Daniel Bernoulli

Lecture notes

LINEARE ALGEBRA für TPH

Winfried Auzinger Gabriela Schranz-Kirlinger Peter Szmolyan Ewa Weinmüller

Wien, 2020

ÜBUNGSSKRIPTUM zur LINEAREN ALGEBRA für TPH

Gabriela Schranz-Kirlinger
Peter Szmolyan
Ewa Weinmüller

Wien 2019

During the course

- Graphical illustration whenever possible.

[^0]\qquad

During the course

- Graphical illustration whenever possible.

- Relate mathematical notions to their physical applications. Work \Leftrightarrow line integral of a vector field.
- Touchscreen laptop, projecting the printed lecture notes and a document with notes written during the lecture (uploaded),
\qquad

During the course

- Graphical illustration whenever possible.

- Relate mathematical notions to their physical applications. Work \Leftrightarrow line integral of a vector field.
with notes written during the lecture (uploaded)
- Illustration videos on YouTube:3Blue1Brown Essence of linear algebra

During the course

- Graphical illustration whenever possible.

- Relate mathematical notions to their physical applications. Work \Leftrightarrow line integral of a vector field.
- Touchscreen laptop, projecting the printed lecture notes and a document with notes written during the lecture (uploaded).
Illustration videos on YouTube:3Blue1Brown Essence of linear algebra

During the course

- Graphical illustration whenever possible.

- Relate mathematical notions to their physical applications.

Work \Leftrightarrow line integral of a vector field.

- Touchscreen laptop, projecting the printed lecture notes and a document with notes written during the lecture (uploaded).
- Illustration videos on YouTube:3Blue1Brown Essence of linear algebra https:
//www.3blue1brown.com/topics/linear-algebra

During the course/tutorials

- TISS TU Wien https://tiss.tuwien.ac.at/course/ courseAnnouncement.xhtml?dswid=1022\&dsrid=607\& courseNumber=103066\&courseSemester=2023W
- Open Books Exam/Tests https:

During the course/tutorials

- TISS TU Wien https://tiss.tuwien.ac.at/course/ courseAnnouncement.xhtml?dswid=1022\&dsrid=607\& courseNumber=103066\&courseSemester=2023W
- TUWEL TU Wien https:
//tuwel.tuwien.ac.at/course/view.php?id=58907
- Open Books Exam/Tests https:

During the course/tutorials

- TISS TU Wien https://tiss.tuwien.ac.at/course/ courseAnnouncement.xhtml?dswid=1022\&dsrid=607\& courseNumber=103066\&courseSemester=2023W
- TUWEL TU Wien https:
//tuwel.tuwien.ac.at/course/view.php?id=58907
- Open Books Exam/Tests https:
//tuwel.tuwien.ac.at/course/view.php?id=59234

Closing lecture

Part 1: Highlights: Principles, concepts, results, solution methods... trying to give a weighting.

Part 2: My research area: Numerical Analysis, Scientific Computing ... steam generator.

Part 3: Still something missing?

Closing lecture

Part 1: Highlights: Principles, concepts, results, solution methods... trying to give a weighting.

Part 2: My research area: Numerical Analysis, Scientific Computing ... steam generator.

Part 3: Still something missing?

Closing lecture

Part 1: Highlights: Principles, concepts, results, solution methods... trying to give a weighting.

Part 2: My research area: Numerical Analysis, Scientific Computing ... steam generator.

Part 3: Still something missing?

Closing lecture

Part 1: Highlights: Principles, concepts, results, solution methods... trying to give a weighting.

Part 2: My research area: Numerical Analysis, Scientific Computing ... steam generator.

Part 3: Still something missing?

Closing lecture: Part 3

- Lecture/Tutorial: Computer Numerics (for applied sciences 2 hours/week)
Approximation for $\pi=3.141592$. Archimedes: Consider a unit circle, its circumference is $\mathcal{C}_{\text {circle }}=2 \pi$. Consider the inscribed and the sircumscribed hexagon:

Closing lecture: Part 3

- Lecture/Tutorial: Computer Numerics (for applied sciences 2 hours/week)
- Approximation for $\pi=3.141592$.... Archimedes: Consider a unit circle, its circumference is
Consider the inscribed and the sircumscribed hexagon:

Closing lecture: Part 3

- Lecture/Tutorial: Computer Numerics (for applied sciences 2 hours/week)
- Approximation for $\pi=3.141592 \ldots$
- Archimedes: Consider a unit circle, its circumference is $\mathcal{C}_{\text {circle }}=2 \pi$. Consider the inscribed and the sircumscribed hexagon:

Closing lecture: Part 3

- Lecture/Tutorial: Computer Numerics (for applied sciences 2 hours/week)
- Approximation for $\pi=3.141592 \ldots$
- Archimedes: Consider a unit circle, its circumference is $\mathcal{C}_{\text {circle }}=2 \pi$. Consider the inscribed and the sircumscribed hexagon:

$$
\begin{gathered}
c_{k}<\mathcal{C}_{\text {circle }}<C_{k} \\
\frac{c_{k}}{2}<\pi=\frac{\mathcal{C}_{\text {circle }}}{2}<\frac{C_{k}}{2}
\end{gathered}
$$

Closing lecture: Part 3

- Lecture/Tutorial: Computer Numerics (for applied sciences 2 hours/week)
- Approximation for $\pi=3.141592 \ldots$
- Archimedes: Consider a unit circle, its circumference is $\mathcal{C}_{\text {circle }}=2 \pi$. Consider the inscribed and the sircumscribed hexagon:

$$
c_{k}<\mathcal{C}_{\text {circle }}<C_{k}
$$

$$
\frac{c_{K}}{2}<\pi=\frac{\mathcal{C}_{\text {dircle }}}{2}<\frac{C_{K}}{2}
$$

$$
3 \frac{10}{71}<\pi<3 \frac{1}{7} \Rightarrow \pi \approx 3.141831107
$$

Closing lecture: Part 3

$$
\begin{array}{rl}
u_{1}:=2, & u_{k+1}:=2^{k+1} \sqrt{2\left(1-\sqrt{1-\left(2^{-k} u_{k}\right)^{2}}\right)}, \quad k=1,2, \ldots \\
2 & 2.828427124746190 \\
4 & 3.121445152258053 \\
6 & 3.140331156954739 \\
8 & 3.141513801144146 \\
10 & 3.141587725279961 \\
12 & 3.141592345611077 \\
14 & 3.141592633463248 \\
16 & 3.141592645321215 \\
18 & 3.141592910939673 \\
20 & 3.141596553704820 \\
22 & 3.141674265021758 \\
24 & 3.142451272494134 \\
26 & 3.162277660168380 \\
30 & 0.000000000000000!!!
\end{array}
$$

Closing lecture: Part 3

$$
\begin{array}{rl}
u_{1}:=2, u_{k+1}:=u_{k} \sqrt{\frac{2}{1+\sqrt{1-\left(2^{-k} u_{k}\right)^{2}}}}, \quad k=1,2, \ldots \\
2 & 2.828427124746190 \\
4 & 3.121445152258053 \\
6 & 3.140331156954753 \\
8 & 3.141513801144301 \\
10 & 3.141587725277160 \\
12 & 3.141592345570118 \\
14 & 3.141592634338563 \\
16 & 3.141592652386591 \\
18 & 3.141592653514593 \\
20 & 3.141592653585094 \\
22 & 3.141592653589501 \\
24 & 3.141592653589776 \\
26 & 3.141592653589794 \\
28 & 3.141592653589795 \\
30 & 3.141592653589795
\end{array}
$$

Computernumerics

DO 300 J=JMIN-1, JM $\operatorname{TRHS}(J M I N)=4.000$ TRHS $(J M A X)=6.000$ DO $400 \mathrm{~J}=\mathrm{JMIN}+1$, JM $)$ WRITE $(6,410)$ WRITE (6,420) (TSOL।

$$
\text { cnomat in } 767 \text { ? }
$$

 CALL R E S G (TSOL
 CALL A U S GV (RE:
 $\stackrel{C}{C}$
berechnung der jac
CALL J A C (TSOL(J)
CALL AUSGM(AC
C
C
C
loesung des linearen gleichungssystems a(tsol)delta=-res(tsol);
parameterbeschreibung f"ur lsarb findet man in der imsl library
CALL D L S A R B (JMAX-JMIN+1,A(1,JMIN), 3,1,1,RES(JMIN),1,
\&DELTA(JMIN))
C
C
C berechnung der neuen loesung nsol(j), j von $\mathrm{jmin}-1$ bis $\mathrm{jmax}+1$, und
C deren ausgabe
C
NSOL $(J M I N-1)=$ TSOL $(J M I N-1)$
$\operatorname{NSOL}(J M A X+1)=\operatorname{TSOL}(J M A X+1)$
DO $500 \mathrm{~J}=\mathrm{JMIN}, \mathrm{JMAX}$
500 NSOL (J) $=$ TSOL (J$)+$ DELTA (J)
WRITE $(6,600)$
WRITE (6, 610) (NSOL (J), J=JMIN-1, JMAX + 1)
600 FORMAT(' DIE NEUE LOESUNG DES LINEARISIERTEN PROBLEMS')

Tutorial for Computernumerics

Tutorial for Computernumerics
4th term, 72 participants

2 projects pro term, one topic for a small group of 6, three subtopics for 3 pairs $\Rightarrow 36$ pairs

Tutorial for Computernumerics

Tutorial for Computernumerics

- 4th term, 72 participants

2 projects pro term, one topic for a small group of 6 , three subtopics for 3 pairs $\Rightarrow 36$ pairs

- one meeting per week, 30-45 minutes per group

Tutorial for Computernumerics

Tutorial for Computernumerics

- 4th term, 72 participants
- 2 projects pro term, one topic for a small group of 6 , three subtopics for 3 pairs $\Rightarrow 36$ pairs
one meeting per week, 30-45 minutes per group week
written documentation in Latex

Tutorial for Computernumerics

Tutorial for Computernumerics

- 4th term, 72 participants
- 2 projects pro term, one topic for a small group of 6 , three subtopics for 3 pairs $\Rightarrow 36$ pairs
- one meeting per week, 30-45 minutes per group $\Rightarrow 6$ to 9 hours per week

Tutorial for Computernumerics

Tutorial for Computernumerics

- 4th term, 72 participants
- 2 projects pro term, one topic for a small group of 6 , three subtopics for 3 pairs $\Rightarrow 36$ pairs
- one meeting per week, 30-45 minutes per group $\Rightarrow 6$ to 9 hours per week
- written documentation in Latex

Summary

Summary

[^0]: Relate mathematical notions to their physical applications. Work \Leftrightarrow line integral of a vector field.

